If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+2-20x=0
a = 8; b = -20; c = +2;
Δ = b2-4ac
Δ = -202-4·8·2
Δ = 336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{336}=\sqrt{16*21}=\sqrt{16}*\sqrt{21}=4\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4\sqrt{21}}{2*8}=\frac{20-4\sqrt{21}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4\sqrt{21}}{2*8}=\frac{20+4\sqrt{21}}{16} $
| .5(7d+4=7-1.5d) | | 6X2-5x+1=0 | | 0.5(7d+4=7-1.5d) | | f/6=2.5 | | 2x^2=714 | | 49b3-1b=0 | | x+8/10=8 | | 1/20=10/x | | 2(3x-4)+5=3+2(2x+3)-8 | | x(x+2)=675 | | (4x+42)(2x+25)=714 | | 258=209-v | | -3(x+2)+3/10=3 | | -4(6x-4)=40 | | Y=2/3x+9(4-8) | | 140-y=215 | | Y=-7x+1(-1/2,1/3) | | Y=3x-9(-5-4) | | Y=1/2x+(2-7) | | Y=7x-1(1-2) | | 32=16^-x-4 | | Y=1x+2(8,7) | | 4(b+2)-(8+10b)=54 | | Y=3x-11(9,6) | | 50-4x=190-44x | | X-8=2x+7-8-2 | | x^2/(1-x)=0.58 | | 3x-37=2x+23 | | 3y+40=180 | | 14+4+11x+1=90 | | 14+4=11x+1 | | 5h+7h(-3h+20)=20–16h |